Generalized Uncertainty Principle and Self-Adjoint Operators
نویسندگان
چکیده
In this work we explore the self-adjointness of the GUP-modified momentum and Hamiltonian operators over different domains. In particular, we utilize the theorem by von-Newmann for symmetric operators in order to determine whether the momentum and Hamiltonian operators are self-adjoint or not, or they have self-adjoint extensions over the given domain. In addition, a simple example of the Hamiltonian operator describing a particle in a box is given. The solutions of the boundary conditions that describe the self-adjoint extensions of the specific Hamiltonian operator are obtained.
منابع مشابه
Complex Symplectic Spaces and Boundary Value Problems
This paper presents a review and summary of recent research on the boundary value problems for linear ordinary and partial differential equations, with special attention to the investigations of the current authors emphasizing the applications of complex symplectic spaces. In the first part of the previous century, Stone and von Neumann formulated the theory of self-adjoint extensions of symmet...
متن کاملA note on $lambda$-Aluthge transforms of operators
Let $A=U|A|$ be the polar decomposition of an operator $A$ on a Hilbert space $mathscr{H}$ and $lambdain(0,1)$. The $lambda$-Aluthge transform of $A$ is defined by $tilde{A}_lambda:=|A|^lambda U|A|^{1-lambda}$. In this paper we show that emph{i}) when $mathscr{N}(|A|)=0$, $A$ is self-adjoint if and only if so is $tilde{A}_lambda$ for some $lambdaneq{1over2}$. Also $A$ is self adjoint if and onl...
متن کاملError bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion
On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.
متن کاملApproximate diagonalization of variable-coefficient differential operators through similarity transformations
Approaches to approximate diagonalization of variable-coefficient differential operators using similarity transformations are presented. These diagonalization techniques are inspired by the interpretation of the Uncertainty Principle by Fefferman, known as the SAK Principle, that suggests the location of eigenfunctions of self-adjoint differential operators in phase space. The similarity transf...
متن کاملGeneral results on the eigenvalues of operators with gaps, arising from both ends of the gaps. Application to Dirac operators
This paper is concerned with an extension and reinterpretation of previous results on the variational characterization of eigenvalues in gaps of the essential spectrum of self-adjoint operators. We state two general abstract results on the existence of eigenvalues in the gap and a continuation principle. Then, these results are applied to Dirac operators in order to characterize simultaneously ...
متن کامل